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Elastic fibrous composites with an arbitrary cell microstructure are studied. A 

procedure is developed for determining the state of stress and the macroscopic 
properties of such materials. A rigorous foundation is given for the algorithms 

obtained. Results of computations are presented. 
Composites with the simplest cell microstructure have been studied in Cl], as 

well as by the method of [Z] in [3]. General methods for investigating elastic 

inhomogeneous structures are contained in [4, 51. 

1. Computatfonal scheme for a composite, Formulation of the 
problem, Let us consider a three-dimensional isotropic medium reinforced by a doub- 
ly-periodic (in the sense of the geometry and elastic characteristics) system of groupsof 
rectilinear fibers with cylindrical cavities (Fig. 1). The geometric and elastic properties 
of such a medium are described completely by the microstructure of the (fundamental) 
cell being duplicated periodically. Let us assume that the fibers are set in the medium 
with some transverse tension, identical at congruent points and constant along the fiber 
length. The connection between the medium and fiber is such that the force vector va- 

ries continuously during passage through the contact boundary, while the displacement 

vector undergoes a jump due to the transverse tension. 

Fig. 1 
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Let us consider the following state of stress to be realized in the bulk 

o1 = ol (q, q), ff, = uz (q, x2), e3 = cons% (1.1) 

212 = 712(Jr, a$), 't13 = 213 (%r 22)7 T23 = 723 (% .2;) 

Here and henceforth, or, s?, CT,, rIZ, r13, rsa are components of the stress tensor, 

e,. e,, ezl y12 J 2, y13 I 2, y23 I 2 are components of the strain tensor. 
The system (1.1) decomposes into two linearly independent states of stress “general- 

ized plane strain” and “longitudinal shear” 

o1 == cl (x,, ~a), 0s -= (5s (z,. x.,), es ~~~ corrst (1.2) 

rrs z= rn! (% %)r III3 = rs3 :=-- 0 

r13 == ^G*a (21’ %), T‘7a - 723 ‘rl’ ( X;L)r 151 =: CT, ==- f?:, = 7-12 z= 0 (1.3) 

bet us use the regular Kolosov-M~khelishvili functions 9 (z) and ?p (z) in the com- 
plex variable z =: 5, + ix, which determine the stresses and displacements by means 
of the formulas [6] 

cr, + 02 = 2 [cp’ (2) $- cp’ @)I 0.4) 
crs - or i- 2iz -- 2 [‘$’ (2) -j- q’ (z)], 12 .-- x z-7 3 - itv 

_I_ - 

to describe the state of stress (1.2). 
Besides (1.4), we have from (1.2) and Hooke’s law 

(1.5) 

Let us express the stresses and displacements correponding to (1.3) in terms of the 

regular function I+’ (z) [63 

(1.6) 

In (1,4)-(1.6) we use the notation: II, V, 20 are the displacement vector compo- 
nenets, C and s are the shear modulus and Poisson’s ratio of the material of the medi- 
um, and c is some real constant. 

Therefore the problem of the theoretical description of a composite reduces to two- 

dimensional problems of elasticity theory. In conformity with this, let us consider a plane 
medium x3 = const, reinforced by a doubly-periodic system of groups of foreign mul- 
ticonnected inclusions. 

Let or and wp (Im q --_ 0, ]nr a, j q ) (1) be the fundamental periods of the 
structure. Each period parallelogram 11,,,,, (m, n = 0, fl, . . .) containsagroup 
of inclusions with the elastic characteristics C,i and v,i. filling the finite multiconnec- 
ted domains DA,?% (j = 1, 2, _ . ., k). Let A’$,,, (S =: 1, 2, . . ., Tj) denote 
the hole outlines, c&;‘,~~ 
X.&Z I L& *?t 

the finite simply-connected continua bounded by the contours 
the interface between the inclusion and the medium, and II the unboun- 

ded domain occupied by the medium (Fig. 1). 
We use the following notation: 
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Let us assume that each of the contours Li,,, A&, has a curvature satisfying the 
Holder condition. 

Let us assume that the average stresses over the fundamental periods S,, S,, Si2, T,, 
Ta exist in the medium (the forces S,, S,, S,, in Fig. 1 lie in the plane of the sketch, 
while the forces Tr, T3 are perpendicular to it and the dot near the Ti, T, corresponds 

to the direction from the plane of the cross, and the cross along the direction to this plane) 
which assures double-periodicity of the stress tensor and quasiperiodicity of the function 

g (2) = cp (2) i- z q’(z) + $ (z), x (z) = G [2ImF (z) - c ( z I2 I 21 

The identities 

6 (’ + %) - 6 lz) L --Ii ]i (Sia + S, COS e) - S,Sin e] 

g (’ + %) - 6 (2) = 12 [i(S,,COS 8 + S,) - S,,Sin e] 

X (2 + 01) - x (z) = ZlT2, X (2 + %) - x fz) = Z2Tl 

hence follow. 
4 = I 01 I, 4 = I a2 1, 8 = arg ~a 

(1.7) 

(1.8) 

Integrating the first of the relationships (1.6) over the boundary of the fundamental 
period parallelogram, we obtain 

c=O a 9) 

Quasiperiodicity of the functions q~ (z), F (z), of the combination Z cp’ (z) + $ (z) 

and of the displacements U, 21, w follow from (1.4) - (1. S), (1.8) and (1.9) and the 
periodicity of the stress tensor. 

Summarizing, we arrive at the problem of determining the functions cp (z), q (z), 

F (z) and vj (z), $j (z), Fj (z) which are regular in the domains D and @,a (i = 

1, 2, . . ., k) , respectively, from the system of boundary conditions 

- _ 
+ $j lt> (1.10) 

-- 

-$jy- [XjCpj (t) - Qi (t) - 9j (t)l - v3t + 

Cpj tt) + tTj'(t) + $j tt) = cj,s t E ?b& 

F (t) + m(t) y= Fj (t) + Fj (t) 

G [F(t) - F(t)] = Cj [Fj (t) - Fj (t)I 

Fj (t) - Fj it) = icy,, t E k;,; 
s=1,2,. . . ,rj, i=1,2,. . . ,k 

(1.11) 

t Ez L&l 

Here hj (t) are the known jumps in the displacement, and Cj,, Ci,, are constants 

to be determined. 
Conditions for the existence of the given average stresses (1.8) in the medium must 

be appended to (1.10). (1.11). 

2. Generalized plane #train of a composite. Let us use the results in 
[S, 71 to construct the general representations of the solution of boundary problem (1.10). 
Let us write 

(2.1) 
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1 --s 2ni P (0 PI (t - 4 dt + Bz, z E D 
‘0, 0 

rPj (2) = & e dt + & \ A?-@_ dt t-z 

- -- 

4j (2) = & $ "jP (t) + yJ’,“’ - w VI dt + 

d,o 

4 
‘i b. 

1 
2ni 

q&Y (t) & + x 3rs 
z -- Zj,# ) z E Do,0 

4, 0 
.s=l 

i=1,2 

pt (2) =I j;i,. p,,, - 22 -& - -&}, P = mo, + no, 

P (t) z {Pj (1) t E ti,Ol 4 (t> = {(rj (f)3 t Cf3 GOI 

0 (t) = (Wj,,$ (t), t E hjd:b} 
Here 5 (z) is the Weierstrass c-function [8], pt (2) is a special meromorphic func- 

tion PI. p (% q (r), 0 (0 are functions to be determined, z~,~ E d$ and bj,, is a 
functional given by the relationships p] 

bj, s = i \ [pi% wft> dt] 
‘9 

4J,S* 

For piecewise-constant a (t) = {ei, t E I_,[,,), p (1) = {pi, t E .!&} and the 
constants a$ and pj (j = 1, 2, . . ., k) we put [5] 

*+x 
@+=s_ly Pj = 

1 + xjcjhj 
f - $ 

11 + ‘i (I + 'j) 'j G 

%==F' 

~j =-? 

1--j ' 

hj = Gi 

Using the properties of the function pr (2) [Z] 

Pl (2 + % ) - Pl (4 = G p (2) + yv 

TY = 2P, (+) --wyp ($), v=1,2 

(p (z) is the Weierstrass p-function [83), and the quasiperiodicity of the Weierstrass <- 
function, it is easy to show that the representation (2.1) assures a doubly-periodic distri- 
bution of the stresses in D. 

The constants A and B in (2.1) are determined from the conditions (1.8). Evaluat- 
ing the left sides in the first two identities in (1.8) by using the function R (z) from(l.7) 
and (2. l), we obtain a system of two equations in R&4 and B. Solving the system 
under the assumption that its compatibility condition 
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Ima = 0 
is satisfied [5], we have 

ReA = ReAL + V4 ((ud + (u2)) 
B = BL + ‘12 ((a,> - <ul) + 2i (T~~)) 

ReAL=Re &a+Gb--$) 
( 

B 
L 

= &- 71 -b--$-Reb-(G-$)Rea 
01 

1 
a== 

s [a W P (t) + I-L V) 4 @)I dt + & s P (t) z 

‘0, 0 ‘0,o 

bz-&- 5 P (t) dt, 6, = 25 + , 
( ) 

S = o,Imo, 

‘0, 0 

(2.2) 

CL 3) 

Here (or), (us), (riz) are the average stresses onareas perpendicular to the coor- 
dinate axes. Formulas to transform the stress tensor components as the coordinate system 

rotates, are given in [6]. 
Since ImA does not influence the state of stress [6], let us assume Im A = 0. 
Now let us reduce the boundary value problem (1.10) to its equivalent system of Fred- 

holm integral equations of the second kind in the functions p (t), q (t), o (t) . Using 
the Sokhotskii-Plemelj formulas [lo] to pass to the limit values in (2. l), substituting 

them into (1.10) and assuming p] 

cj,, = - \ w(t)ds (2.4) 
A;;“, 

we obtain the desired system 

p (to) - Mj {p (t), Q (t)> Cd (t), to} z Pj (lo), to ET G,0 

4 tto) - l\ij {P (t), q (t)~ w (t), to> = Qj (to), to EC ~$0 

0 (lo) - Rj,s {P (t), q (t), 0 (t), to> = 0, to E. A$ 

s=l,2,. ..,r+, j=l,a,...,k 

(2.5) 

Mj {p(t), q (t)m(q, to) = & s (p(t) d 11, ;G + 
j 

%,O 
.L 1 ‘- 

% q (t) d In 6 it-_t$ ) - - Znie. s P (2) x 
3 3 lo,0 

d {(t - to) 5 (t - to) - 51 (t - to)) - & 1 ip @) x 
*j 

‘0,o 

Nj {P(t), 4 (t), 0 (t), to} = - &- S {sp (t) d In ‘E’) + 
3 0 

4,O 
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F-8 q(l)dlnZ-_--ij--d 
1 

1 
- - 

t - to 3 II 2ni x 

i$(t)dG +&- 
0 1 $ (n(t) (+++g) - 

Lkl 

ajp (t) _i - - ci, s 
II 

* I@ - 9) edo + h, @,)I 

Qj (to) = - to & (‘I) z (“) - 1 Jz,h_ [(v - Yj> e,t, + hj (to)] 
*i 3 3 

Let us assume that the functions hj (t) are differentiable and their first derivatives 
satisfy the Ht)lder condition. For this it is sufficient that the solutions p (t), q (t), o (t) 

possess the same property [ lo]. 

Let us note that every solution of the system (2.5) satisfies the compatibility condition 

(2.2) [S]. The operation of the given average stresses in the medium is thereby assured. 
Using n, 51, it can be proved that the system (2.5) is solvable for any right side, and 

always uniquely. Therefore, the system (2.5) in combination with the representation 
(2.1). governs the solution of the initial boundary value problem. 

3. Longitudinal aherr of a compoaito. Let us seek the solution of the 
boundary value problem (1.11) in the class of regular quasiperiodic functions. A doubly- 
periodic stress distribution will thereby be assured in D. 

Let us set 

‘(‘) =‘(s)y s=D; Fj(s)=I(s), ZED&,, j=l,z,...,k (3.1) 

im (t) 5 (t - z) dt + &- 1 in (t) 5 (t - z) dt + EZ 
Ao, 0 

Here m (t), n (t) are real functions to be determined 
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m (t) = {mj (t), t E I&}, 12 (t) = {nj,, (t), t E A&} 
We find the constant E in (3.1) from conditions (1.8). Evaluating the left side of the 

last identity in (1.8) by using the function X (2) , we obtain from (1.7). (1.9) and (3.1) 

ReE=s+ zns~ll., Im (3.2) 

Im E = c;;’ / l;;I(:sl) 
1 

f = 1 m(t)& + 1 n (t) d4 6, = aj 
L 
‘+ 

) 
, 6, = 25 

I !, 9 ) 
0.0 ho,0 

Here (ais) and (rss) are the average shear stresses on areas perpendicular to the 

coordinate axes x1 and 2s. The connection between T,, T, and (rts), (ass) is evident. 
We satisfy the boundary conditions (1.11) because of the still unknown functions m (I), 

n (t). 
Substituting the limit values of the function (3.1) evaluated by using the Sokhotskii- 

Plemelj formulas [lo] into (1.11) and assuming as is done in I7] that 

(3.3) 

we arrive at a system of Fredholm integral e&cations of the second kind in m (t) and 

n (4 
m(to) - G,jV {m(t), n (t), to} = (3.4) 

G’ 
-& ((ris) Im to - (r,s> Re to), to E L:,o 

n (to) - V {m (t), n (t), to} + G;,, == 

-& ((a,,> Im to - (r2s) Re to), to E: hki 

v {m (th n(t), to) = -& 1 m(t) d In 1s + & 1 n(t) x 
‘0,o ho, 0 

din a lt - b) lm (f&) Re to 

6 (t - to) 
+ 

nl1 
+ 

G,j = (G - Gj) /(G + Gi), s = 1,2, . , . rj, i = I,& . . . , h- 

The solutions m (t) and n (t) together with their first derivatives of the system (3.4) 
satisfy the Holder condition [lo]. 

Let us prove the solvability of the system obtained. To do this, let us consider the 
homogeneous system corresoonding to (3.4) whose solution will be denoted by m,, (t) = 

{mj’ (t), t E Li,,} and %J (t) = {nj+’ (t), t E hi;:}. Let us ascribe the super- 
script zero to all the functionals and functions corresponding to this solution. 

Evidently the homogeneous system corresponds to the boundary value problem (1.11) 
for average stresses (ris) and (rss) equal to zero, 

Using the Dirichlet integral formula [8], it can be shown that the solution of this homo- 

geneous boundary value problem is 

F” (2) = const, Fj” (z) = COIISt, i = 1, 2, . , k 

ReF” (z) = ReFj” (z), GImF” (2) = GJmFj” (z) 
(3.5) 
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Passing to the limit values in (3.1) and taking (3.5) into account here, we deduce that 
Izj,,’ (t)are the boundary values of some functions regular in di,‘i . Hence, by virtue of 
the uniqueness theorem for the solution of the Dirichlet problem [8], it follows: 

72;. s (t) = con&, i=1,2 ,..., k, s=l,2 ,..,, ri (3.6) 

According to the Sokhotskii-Plemelj formula, we have for (3.1) 

Fj (t) - F(t) = imj (t), j=1,2,...,k . 

Substituting the function (3.5) in this latter relationship, we obtain 

?iZj' (t) = const, j=1,2,...,k (3.7) 

Evaluating (3.1) by using (3.7), (3.6), and taking (3.5) into account, we find 

F” (2) = 0, Fj” (z) = 0, C;,t = 0, m, (t) = 0, t E Zo,o (3.8) 

Returning to the function no (t) and using (3.3), (3.6) and (3.8). we have 

no (t) =zz 0, t E &I (3.9) 

Therefore, the system (3.4) is solvable for any right side, and always uniquely. The 

correctness of the representation (3.1) is thereby proved. 
The system (3.4) and the representation (3.1) determine the solution of the boundary 

value problem (1.11) completely. 

4. Mrcrolcopic modal of & comporite. Definition. A macroscopic 
model of a composite will be understood to be a homogeneous anisotropic medium pos- 
sessing the property that the average strains will agree for identical average stresses act- 
ing in the material and in the medium. We hence assume hj (t) = 0 (i = 1, 2, 

. . ., k)- 
The average strains are determined as follows: 

<el> = 
u (2 + 01) - u (4 

11 7 W = e3 

(@ = 
v (2 -47 wz) - v (2) v (z + 01) -v (z) 

12sin0 - 11 
ctg 0 

(4.1) 

(+rlS) = 
u (2 i- oh) - u (z) 

+ 
v (z + 01) - v (z) - 

12 sin 0 11 
u (z + 01) - u (z) 

11 
ctg 8 

(713) = 
w (z + 01) - w (z) 

11 

(723) = 
w (z + 02 - w (z) 

12 sin Cl 
_ w (2 + “1:’ - w (z) 

ctg 0 

Introducing the average stress 

(5s) = + 5 o&Qdx:,, 
ii 

S = o1 Imo, (4.2) 

090 

and evaluating the right sides of (4.1). (4.2) by using the formulas (1.4) - (1.6), (2. l), 

(2.3) - (2.5). (3.1) - (3.4), we write (4.1) as 
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:ek> = ckl (%> -+ Ckf (6) + ck~ (cd + ck6 (%?)* h-=1,2,3 (4.3) 

(%a) = c44 (223) + c45 <%3> 

(Yld = c54 (723) + c55 01,) 

(YE) = C61 (01) -t cl32 (02) + C83 (0.3) + C66 (ad 

where Cij (i, j = 1, . . ., 6) are macroscopic elastic parameters of the composite 
which depend on!y on the elastic characteristics of the composite constituents and on 

the geometry. 
For example, for i, i = 4, 5 the expressions Cij are 

1 
CPd = -$- 

2Imf2 1 --9 2Refl 
S c55 = G - s 

C&j = 2Imfl --, 
S 

es* = - - 2R~fz 
S 

f = fi <CJ + f2 (%3), S = w,Im oa 

Here the functionals fx, fz are determined by the relationship (3.2) for (rrs) = 1, 

(rss> = 0 and (rss) = 1, (r13) = 0 ,respectively. 

Fig. 2 Fig. 3 

It is important to emphasize that the C ij depend on the solutions of the corresponding 

doubly-periodic problems in a functional.manner, and it is sufficient to have just several 
functionals for the evaluation of cij This circumstance opens a path to diverse appro- 

ximate approaches to the description of the macroproperties of composites. 
The matrix of the coefficients cij (i, j =: 1, 2, 3, 6) is symmetric and energetic- 

ally admissible [s]. It can be shown analogously to [SJ that this last assertion extends to 
Cij (i, j I: 4, 5). Therefore, it is admissible to treat (4.3) as the Hooke’s law for the 
desired model medium. 

As an illustration, let us consider the longitudinal shear of a compositeof the boralu- 
minum type (the ratio between the shear modulus of the fiber to the shear modulus of. 
the medium equals 6.46) [ 111 with continuous fibers of elliptical cross section located 
at the vertices of a rectangular lattice (~1 = II, o2 = il,). 

Presented in Figs, 2, 3 are curves of the change in the macroscopic parameters 
(Gc&’ = <G& G and (G&l = (G,>/ G (G is the shear modulus of the medium) as a 
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function of the relative domain sizes a / zi, b I I,. In the case under consideration 
c4s = es_, = 0. Figure 2 corresponds to a square lattice I, / I1 = 1, and Fig. 3 corresponds 
to a rectangular lattice 1, / Z1 = 0.5 (solid lines correspond to (pi> and dashes to (G,>). 
It is assumed that the semi-axes of the ellipse a and b are directed along the coordinate 

axes 51 and ~2 , respectively. 
In the particular case a = b, li = l 2 t h e results presented in Fig. 2 agree with the 

corresponding results in [3]. 
Let us note that in deriving (4.3) the stresses and displacements were averaged within 

the limits of a period parallelogram whose dimensions did not exceed 1 mm for the ma- 

jority of composites. Hence, replacing a composite by a homogeneous anisotropic medi- 
um controlled by (4.3) in computational practice will apparently lead to satisfactory 
results. 

REFERENCES 

1. Grigoliuk, E. I. and Fil’shtinskii, L. A., Elastic equilibrium of an iso- 
tropic plane with a doubly-periodic system of inclusions. Prikl. Mekh., Vol. 2, 

I+’ 9, 1966. 
2. Fil’shtinskii, L. A., Stresses and displacements in an elastic plane weakened 

by a doubly-periodic system of identical circular holes. PMM Vol. 28, NQ 3,1964. 

3. Van Fo Fy, G. A., Theory of Reinforced Materials with Coatings. “Naukova 

Dumka”, Kiev, 1971. 
4. Bolotin, V. V., Theory of stochastic reinforced materials. Strength and Plasti- 

city. “Nat&a”, Moscow, 1971. 
5. Fil’shtinskii, L. A., On the theory of elastic inhomogeneous media with re- 

gular structure, PMM Vol. 37, Ng 2, 1973. 

6. Muskhelishvili, N, I., Some Fundamental Problems of Mathematical Elasti- 

city Theory. “Nat&a”, Moscow, 1966. 
7. Sherman, D. I., On the solution of the plane static problem of elasticity theory 

for given external forces. Dokl, Akad. Nauk SSSR, Vol. 28, W 1, 1940. 
8. Hurwitz, A. a n d Co u r a n t , R. , Theory of Functions. “Nat&a”, Moscow, 

1968. 
9. Natanzon, V. Ia., On stresses in an extensible plate weakened by identical 

holes in checkboard array. Matem. Sbornik, Vol. 42. Np 5, 1935. 

10. Muskhelishvili, N. I., Singular Integral Equations. Fizmatgiz, Moscow, 

1962. 
11. Modern Composites (edited by L. Broutman and R. Crock). “Mir”, Moscow, 1970. 

Translated by M.D. F. 


